SentiPers: A Sentiment Analysis Corpus for Persian
نویسندگان
چکیده
Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26,000 sentences of users’ opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well.
منابع مشابه
Sentiment analysis methods in Sentiment analysis methods in Persian text: A survey
With the explosive growth of social media such as Twitter, reviews on e-commerce website, and comments on news websites, individuals and organizations are increasingly using opinions in these media for their decision making. Sentiment analysis is one of the techniques used to analyze userschr('39') opinions in recent years. Persian language has specific features and thereby requires unique meth...
متن کاملA Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملA rule based algorithm for detecting negative words in Persian
In order to facilitate sentiment analysis of Persian text, we’ve designed and implemented an algorithm which aims to detect words with negative polarity. Currently most sentiment analysis algorithms depend mainly on polarity datasets. However, since negative prefixes in Persian are only attached to a semantically positive base (shaghagi, 2002), we have incorporated a negative prefix detection t...
متن کاملFeature Selection Methods in Persian Sentiment Analysis
With the enormous growth of digital content in internet, various types of online reviews such as product and movie reviews present a wealth of subjective information that can be very helpful for potential users. Sentiment analysis aims to use automated tools to detect subjective information from reviews. Up to now as there are few researches conducted on feature selection in sentiment analysis,...
متن کاملPersian Sentiment Analyzer: A Framework based on a Novel Feature Selection Method
In the recent decade, with the enormous growth of digital content in internet and databases, sentiment analysis has received more and more attention between information retrieval and natural language processing researchers. Sentiment analysis aims to use automated tools to detect subjective information from reviews. One of the main challenges in sentiment analysis is feature selection. Feature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.07737 شماره
صفحات -
تاریخ انتشار 2018